Die Reinigungstechnologien in Kläranlagen (KA) sind nicht dafür ausgelegt, Rückstände von einer Vielzahl an synthetischen Stoffen, sogenannten Mikroverunreinigungen (MV), wie pharmazeutischen Spurenstoffen, aus dem Abwasser zu entfernen. Auch wenn die Umweltauswirkungen noch nicht vollständig geklärt sind, besteht die Notwendigkeit, Kläranlagen mit der 4. Reinigungsstufe (4.RS) zur Entfernung dieser Rückstände zu modernisieren und so die Gewässerqualität in den Flüssen und der Ostsee zu verbessern.

Kriterien, die bei einer Aufrüstung der KA mit der 4. Reinigungsstufe zu berücksichtigen sind:

- 1. Investitionskosten
- → Wirtschaftliche Rentabilität
- 2. Energieverbrauch
- Erhöhte Energiekosten
- 3. Überwachung der 4.RS →
- Mehr Arbeitsaufwand,
 Beeinflussung anderer
 Reinigungsstufen, erhöhte
 Kompetenzanforderungen der
 KA-Betreiber
- 4. Laufende Kosten
- Betriebskosten (Personal, Verbrauchsmaterial)

Oxidation mit Ozon

- · Relativ geringer Platzbedarf
- Kompakt und kostengünstig
- Nicht f
 ür jedes Abwasser geeignet Bedarf einer fundierten Entscheidungshilfe
- Vorbehandlung entscheidend! (mechanisch / biologisch)
- Der Ozonverbrauch steigt mit zunehmendem DOC (gelöster organischer Kohlenstoff)
- Nachbehandlung erforderlich (z. B. Sandfilter), um potenziell giftige Nebenprodukte zu reduzieren
- Potentielle Bildung von krebserregendem Bromat aus Bromid im Abwasser beachten

Pulveraktivkohle (PAK)

- Keine Bildung von Nebenprodukten
- Mögliche Wechselwirkungen mit bestehenden Reinigungsstufen
- · Höherer Bedarf an Polymeren und Fällungshilfsmitteln
- Lagerung und Handhabung von PAK (Explosionsgefahr und abrasiver Verschleiß von Pumpen und Rohren)
- Vorbehandlung zur PAK-Trennung erforderlich
- Verbrennung von PAK-Schlamm erforderlich

Aktivkohlegranulat (GAK)

- Alternative zu PAK
- Vorbehandlung entscheidend! (Mechanisch / biologisch)
- Kompakt und einfach als 4.RS installierbar durch Austausch von Filtermaterial
- Gleiche Vorteile wie PAK sowie unkomplizierte Handhabung und Lagerung
- Relativ großer Platzbedarf

Kontakt

Informationsmaterial

Gdansk Water Foundation

Beata Szatkowska beata.s@gfw.pl www.gfw.pl

Koordinator

Universität Kristianstad

Erland Björklund erland.bjorklund@hkr.se www.hkr.se

Dieser Flyer wurde innerhalb des Projekts MORPHEUS entwickelt. Ziel des Projektes ist die Verbesserung der Gewässerqualität im südlichen Ostseeraum durch die Reduktion der Einträge pharmazeutischer Spurenstoffe, die über Kläranlagen in den Wasserkreislauf gelangen.

The contents of this leaflet are the sole responsibility of the author and can in no way be taken to reflect the views of the European Union, the Managing Authority or the Joint Secretariat of the South Baltic Cross-border Cooperation Programme 2014-2020.

Inhalt: Technische Hochschule Gdansk Layout: EUCC-D Übersetzung: EUCC-D und Universität Rostock

4. Reinigungsstufe in Kläranlagen zur Entfernung pharmazeutischer Spurenstoffe

www.morpheus-project.eu

Auswahlkriterien für Reinigungstechnologien

Vor- und Nachteile der Technologien der 4. Reinigungsstufe in Kläranlagen

1. Kläranlage - EGW, Q, einleitende Gewässer

Einzugsgebiet-Kriterien

- KA mit hohen Frachten
- KA im Einzugsgebiet von Seen
- KA an Flüssen mit einem Abwasseranteil > 10%
- KA an Flüssen in Trinkwasserschutzgebieten
- 2. Kläranlage vorhandene Technologien

Technologische Kriterien

- Mechanische Reinigungsstufe
- Biologische Reinigungsstufe
- Nachbehandlung
- Klärschlammmanagement
- Verfügbarer Platz, Anwesenheit von qualifiziertem Personal, Verbrennungsanlage
- Das Vorhandensein von Bromid schließt die Ozonierung aus
- 3. Vorkommen von pharmazeutischen Spurenstoffen im Kläranlagenzu-/ablauf

Belastungs-Kriterien

- Chemische Belastung der KA und Effizienz der aktuellen Technologie in der Arzneimittelentfernung
- 4. Zusätzliche Kläranlagen-Parameter

Zusätzliche relevante Kriterien

- Ansichten/Ziele verschiedener Interessensgruppen
- Finanzierungsmöglichkeiten für eine 4.RS

Prozess	Technologie	Vorteile	Nachteile
Physikalisch	UmkehrosmoseNanofiltrationMikrofiltration	 Effektiv für eine große Bandbreite von MV Effektivität der MV -Entfernung relativ bzw. sehr stabil 	 Nebenprodukt (Konzentrat) ist problematisch und teuer in der Handhabung Hoher Energieverbrauch
Biologisch	 Membran-Bioreaktor (MBR) Moving-Bed-Biofilm Reaktor (MBBR) Andere Biofilme 	 MV werden durch biologischen Abbau und Adsorption an Klärschlamm aus dem Abwasser entfernt (als Überschussschlamm aus dem System entfernt) Effektivität der MV - Entfernung relativ stabil 	 MV-Entfernung ist abhängig von Substrat und Mikrobiengemeinschaft Umwandlung und Abbau von MV ist nicht ausreichend erforscht (unbekannte Zwischenprodukte)
Adsorption	 granulierte Aktivkohle (GAK) Pulveraktivkohle (PAK) 	 Effektiv für eine große Bandbreite von MV Effektivität der MV -Entfernung relativ stabil 	 Regelmäßiger Austausch bzw. Regeneration der GAK Überschussschlammentwässerung und -verbrennung nach PAK - Dosierung Hoher Energiebedarf zur Regeneration von GAK In Anwesenheit von DOC bzw. TOC ist Adsorption kompetitiv
Oxidativ	 Ozonierung UV/H₂O₂ O₃/H₂O₂ 	 Ozondosierung leicht modifizierbar Effektivität der MV -Entfernung relativ stabil 	Unvollständiger Abbau von MVHoher Energiebedarf

DOC – gelöster organischer Kohlenstoff, TOC - gesamter organischer Kohlenstoff, MV - Mikroverunreinigungen

