

WP3 – Regional Consumption Patterns of Pharmaceuticals

PP3 Jens Tränckner and Alena Kaiser (University of Rostock)

Agenda

- Boundary Conditions for Consumption Analysis
- Regional Data Availability
- Model Approaches
- Results: Country-wise & Comparison
- Conclusion
- Q&A

Consumption Analysis

Assumptions

- Top-down approach
- Main path of pharmaceuticals into environment via WWTPs
- Improper disposal and veterinary application is not quantifiable so far
- Total intake loads of pharmaceuticals calculated by "average inhabitants"
- Sludge not regarded yet

Reduced list of representative Pharmaceuticals Combining criteria from WP3 and WP4

J – Antiinfectives for systemic use

Amoxicillin

Azithromycin Ciprofloxacin Clarithromycin Erythromycin Sulfamethoxazole

M – Muscolo-skeleton system

Diclofenac Ibuprofen Naproxen

N – Nervous system

Paracetamol Carbamazepine Oxazepam Risperidone Fluoxetine

> G – Genito urinary system and sex hormones

Estradiol Estrone Ethinylestradiol

C – Cardiovascular system

Atenolol Metoprolol Propranolol Bezafibrate

A – Drugs used in diabetes

Metformin

V – Various

Iopromid

Characterization of Pharmaceuticals

- ATC = anatomical-therapeutic-chemical classification
 - Case of application (Letter)
 - Therapeutic/pharmacological (digits + letters)
 - chemical substance (digits)

	Pharmaceutical	ATC	Description
Examples	Diclofenac	D11AX18	Dermatologicals
		M01AB05 M01AB55	Muscolo-skeletal system Antiinflammatory and antirheumatic, non-steroids Acetic acid derivatives and related substances
Corbamazanina		M02AA15	Muscolo-skeletal system
Carbamazepine	V		Topical products for joint and muscular pain Antiinflammatory preparations, non-steroids for topical use
		N02AJ05	Nervous system Analgesics, opioids Opioids in combination with non-opioid analgesics

Regional Data Availability Units of Pharmaceuticals

- - "Assumed average maintenance dose per day for a drug used for its main indication in adults" (WHOCC 2018)
 - Unit widely applied in consumption statistics
 - ATC/DDD-Index applicable for Conversion of DDD into loads (grams)

VS.

EAN codes = trading bar codes of sold products

→ Lithuania & Poland

- Statistics based on wholesale data
- Reimbursement of pharmaceuticals by health care funds: recording number of packages
- Conversion into loads (grams) by package info: number of pills, content

Regional Data Availability Source and Resolution of Data

- Distribution sites differ: Prescriptions/pharmacies, Application in hospitals or OTC (over the counter sales)
- Data gathered from national authorities, health care institutions and companies
- Differences in
 - Spatial resolution
 - Temporal resolution

Source: DAZ online, 2019

European Regional Development Interreg Fund South Baltic EUROPEAN UNION

MORPHEUS Model Area Lithuania

100

200

CCM2 River and Catchment Database © European Commission - JRC, 2007 Sergej Suzdalev, Klaipeda University

8

Model Approach GER-Model Area

MORPHEUS

Model Areas for Removal

he South Baltic

of Pharmaceutical Substances

Model Approach SE-model area

11

Model Approach for PL-model area

12

Model Approach for LT-model area

1+

Results: country-wise total intake loads

Pharmaceutical	total intake in 2015	Intake per inhabitants				
Amoxicillin	Pharmaceutical	N.(EAN.codes) tota	al intake in 2015	Intake per Per	son	
Atenolol	Amoxicillin*	Pharmaceutical	N (FAN-cod	total intake i	n 2015 Intake per Pe	rson
Azithromycin	Attonolol			Pharmaceutical	total intake Kristianstad	Intake per inhabitant
Bezafibrate	Atenoioi	Amoxicillin	63		in 2015 [kg]	in 2015 [mg]
Carbamazepine	Azithromycin	Atenolol	2	Amoxicillin	34.2	414.7
Ciprofloxacin*	Carbamazepine	Azithromycin	34	Atenolol	21.7	262.8
Clarithromycin*	Ciprofloxacin*	Carbamazonin	11	Azithromycin	0.8	9.8
Diclofenac*	Clarithromycin			Bezafibrate	2.6	31.4
Erythromycin	Diclofenac*	Ciprofloxacin	9	Carbamazepine	43.5	526.6
Estradiol	Enuthromusin	Clarithromycin	32	Ciprofloxacin	24.6	298.6
Ethinylestradiol*	Eryunoniyem	Diclofenac	22	Clarithromycin	1.1	13.4
Fluoxetine	Estradioi	Erythromycin	6	Diclofenac	27.6	334.4
Ibuprofen*	Fluoxetine	Estradiol	28	Erythromycin	4.1	50.1
lopromide*	lbuprofen*	Estimator		Ethinylestradiol	0.021	0.2
Metformin	Metformin		•	Fluoxetine	3.8	46.0
Metoprolol	Metoprolol	- Eluoxetin	10	Ibuprofen	873.4	10585.6
Naproxen*	Naproxen*	lbuprofen	4	Metformin	1275.5	15459.0
Qxazepam*	Oxazepam*	Metformin	22	Metoprolol	118.9	1441 2
Paracetamol*	Paracetamol*	Metoprolol	3	Naproven	91.5	1108.6
Propranolol	Taracetanio			Naproxen	51.0	1100.0
Risperidone	Propanolol	Naproxen	24	Oxazepam	5.7	69.6
Sulfamethoxazole*	Risperidon	Oxazepam	2	Paracetamol	4819.9	58416.1
L I	Sulfamethoxazole	Propanolol	2	Propranolol	6.3	76.7
		Risperidon	53	Risperidone	0.1	1.4
			L [Sulfamethoxazole	19.7	238.2

Various Distribution Sites of Pharmaceuticals in Sweden and Germany

Results: Temporal Resolution in Poland

15

16

Results: Spatial Resolution in Lithuania

Results: Comparison

	Germany	Sweden	Poland	Lithuania
Pharmaceutical	[mg/inh.]	[mg/inh.]	[mg/inh.]	[mg/inh.]
Amoxicillin	840.9	414.7	2,952.9	977.3
Atenolol	51.8	262.8	19.3	4.2
Azithromycin	82.0	9.8	73.0	7.6
Bezafibrate	163.4	31.4		
Carbamazepine	892.7	526.6	715.9	204.1
Ciprofloxacin	365.1	298.6	251.0	84.5
Clarithromycin	205.8	13.4	226.7	66.4
Diclofenac	616.2	334.4	210.1	257.7
Erythromycin	350.3	50.1		0.9
Estradiol	3.3		0.8	
Ethinylestradiol	5.4			
Fluoxetine	11.4	46.0	20.0	2.3
Ibuprofen	12,610.4	10,585.6	223.6	2,001.6
lopromide	19,551.7			
Metformin	29,621.5	15,459.0	17,602.7	9,606.2
Metoprolol	1,796.1	1,441.2	82.2	618.7
Naproxen	261.4	1,108.6	780.4	135.4
Oxazepam	1.0	69.6		1.4
Paracetamol	882.9	58,416.1		968.6
Propranolol	87.7	76.7	27.6	4.3
Risperidone	3.0	1.4	1.2	1.2
Sulfamethoxazole	260.9	238.2	149.6	47.3

Follow-up for Model Approach

Follow-up for Model Approach

- Intake per inhabitant projection on WWTP
- Scenario: many WWTPs in catchment
- Accumulation of loads in rivers discharging into the Baltic Sea
- Predictable concentrations
- Applicable for all Model Areas

Source: masterthesis E.Wiktorowski 2018 (Universität Rostock)

Conclusion

- 1. With given data quality and availability, a proper consumption analysis can be performed.
- Model approaches need to be adjusted to national data formats but can be made comparable (intake mg/inh./a).
- 3. Consumption can be predicted at WWTP level via connected inhabitants.
- 4. In rural areas, mitigation strategies become more challenging due to dispersed point sources.
- By using average but regional loads, a basic model was developed with optimization potential for scenarios in rural areas.

© A.Kaiser (Feb. 2018) Second sampling campaign MORPHEUS.

Thank you for your attention and now time for Q&A

WP3 Regional Consumption Patterns of Pharmaceuticals

Jens Tränckner & Alena Kaiser

Traditio et Innovatio

